Ceramides promote apoptosis for virus-infected lymphoma cells through induction of ceramide synthases and viral lytic gene expression

نویسندگان

  • Lu Dai
  • Jimena Trillo-Tinoco
  • Aiping Bai
  • Yihan Chen
  • Jacek Bielawski
  • Luis Del Valle
  • Charles D. Smith
  • Augusto C. Ochoa
  • Zhiqiang Qin
  • Chris Parsons
چکیده

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for several human cancers including primary effusion lymphoma (PEL), a rapidly progressive malignancy arising preferentially in immunocompromised patients. With conventional chemotherapy, PEL continues to portend high mortality, dictating the development of novel therapeutic strategies. Sphingosine kinase 2 (SphK2) represents a key gatekeeper for sphingolipid metabolism, responsible for conversion of ceramides to sphingosine-1-phosphate (S1P). We have previously demonstrated that targeting SphK2 using a novel selective inhibitor, ABC294640, leads to intracellular accumulation of ceramides and induces apoptosis for KSHV-infected PEL cells, while suppressing tumor progression in vivo. In the current study, we sought to determine whether specific ceramide/dh-ceramide species and related ceramide synthases (CerS) impact viability for KSHV-infected PEL cells during targeting of SphK2. We found that several specific ceramide and dihydro(dh)-ceramide species and their associated CerS reduce PEL survival and tumor expansion in vitro and in vivo. Moreover, we found that dhC16-Cer induces PEL apoptosis in part through activation of KSHV lytic gene expression. These data further implicate bioactive sphingolipids in regulation of PEL survival, and provide justification for future studies evaluating clinically relevant ceramide analogs or mimetics for their potential as therapeutic agents for PEL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma.

Sphingosine kinase (SPHK) is overexpressed by a variety of cancers, and its phosphorylation of sphingosine results in accumulation of sphingosine-1-phosphate (S1P) and activation of antiapoptotic signal transduction. Existing data indicate a role for S1P in viral pathogenesis, but roles for SPHK and S1P in virus-associated cancer progression have not been defined. Rare pathologic variants of di...

متن کامل

Sphingosine Kinase-2 Maintains Viral Latency and Survival for KSHV-Infected Endothelial Cells

Phosphorylation of sphingosine by sphingosine kinases (SphK1 and SphK2) generates sphingosine-1-phosphate (S1P), a bioactive sphingolipid which promotes cancer cell survival and tumor progression in vivo. We have recently reported that targeting SphK2 induces apoptosis for human primary effusion lymphoma (PEL) cell lines infected by the Kaposi's sarcoma-associated herpesvirus (KSHV), and this o...

متن کامل

A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections.

The ceramide family of lipids plays important roles in both cell structure and signaling in a diverse array of cell types, including immune cells. However, very little is known regarding how ceramide affects the activation of dendritic cells (DCs) in response to viral infection. In this study, we demonstrate that a synthetic ceramide analog (C8) stimulates DCs to increase the expansion of virus...

متن کامل

hTERT inhibition triggers Epstein-Barr virus lytic cycle and apoptosis in immortalized and transformed B cells: a basis for new therapies.

PURPOSE Induction of viral lytic cycle, which induces death of host cells, may constitute a useful adjunct to current therapeutic regimens for Epstein-Barr virus (EBV)-driven malignancies. Human telomerase reverse transcriptase (hTERT), essential for the oncogenic process, may modulate the switch from latent to lytic infection. The possible therapeutic role of hTERT inhibition combined with ant...

متن کامل

القاء مرگ برنامه‌ریزی شده در سلول‌های اپی‌تلیوم تنفسی انسان آلوده شده با ویروس آنفلوانزا

Introduction: Avian influenza viruses are considered as a serious threat to human and animal health. An increase in expression of proinflammatory cytokines and type I IFN genes, as well as host cell death responses contribute to the pathogenesis of influenza infection. Hence, this study aimed to evaluate the growth dynamics of subacute avian influenza virus in human respiratory alveolar epithel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015